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SYSTEM AVAILABILITY: TIME DEPENDENCE AND STATISTICAL INFERENCE
BY (SEMI)NON-PARAMETRIC METHODS.

D.P. Gaver

P.A. Jacobs

1. INTRODUCTION.

Component or system availability generally refers to (a) the

probability that the item of concern is operable or "up" and mission-

capable at a point or during a period of time, or to (b) the fraction

of time, or of demands if the item is on standby, for which the system

is up. Applied to large systems such as entire U.S. Navy ships, system

availability is referred to as readiness. At a different level, the

availability and fault-tolerance of computer systems, both government

and commercial, is of concern, and has recently been extensively

modelled and simulated; see Goyal, Lavenberg and Trivedi 1
. The

availability concept is also relevant when discussing the safety and

productivity of commercial nuclear power plants; in that arena it is

quantified by probabilistic risk assessment (PRA). Relaued finite

state stochastic models also occur in medical studies; c.f. Cox 2 ,

3Jacobs

Component or system availability is influenced both by the

inherent failure-prcneness of the item and by the time and resources it

takes to restore a failed item to service. Times to failure or -up

ti mes-and to restoration or "down" times may vary considerably, and not

necessarily independently, depending upon the mode of failure, the time

required to diagnose the failure including the access to (including

• . i I se mi li mim~sl ni~ ii min,-.



competition for) diagnostic equipment and human skills, the

availability of spare parts (logistic delays), and other factors. It

is also quite conceivable that the quality of the repair activity

influences future times to failure. This effect is not recognized by

the usual models; but see Gaver 4 (pp. 775-800), and Thomas, Jacobs and

Gaver0 . Incorporation of "availability growth" in availability

situations is a practical issue that is not frequently modelled; see

our Section 2 below, hcwever.

T-he present paper addresses the assessment of simple system

availability w!-en there is concern about (a) time-dependence, so

demands for system performance are not necessarily when the system is

in "steady-state," as is often assumed, and when (b) information about

system failures and repairs is in the form of observed data so

questions of statistical influence arise. The methods and models

involved lean towards the semi-parametric or non-parametric; in

particular we employ the )mpirical Laplace transform in the time-

dependent scenarios of interest; non-parametric estimation in assumed

steady-state situations has been studied by Gaver and Chu6 . Other

investigations, e.g. Cox , Gross and Harris 8 and Ascher and Feingold 9

have been overwhelmingly concerned with estimation in presumably well-

specified stochastic (queueing, Markov) models; considerations of model

mis-specification are seldom broached. Here we propose analytically

simple approximations to time-dependent system behavior, and assess the

effects of model specification ("up" and "down" time dependen1ce) upon

rates of approach to a long-run steady state as the latter are

estimated from available data (assumed to be a random sample).

I ncert'a inty a~ssslent (confidence 1 imits and standard errors) are

2



furnished. More elaborate procedures involving Bayes or empirical

Bayes setups that permit "strength borrowing" (in John 'rukey's phrase)

Pre not addressed here, but are agenda. items.

Our paper's plan is as follows. Section 2 describes a selected

group of probability models for simple system availability; no

comprehensiveness is claimed. Solutions are given in terms of Laplace

transforms, all of which are rendered immediately interpretable in

terms of the random-time-of-demand or observation parad gm., described

originally and applied to transform inversion in Gaver1 0 . Section 3

de-cribes and "fits" the simple exponential-approach-to-steady-state

model used fTor representing time-dependent behavior; see Odoni and

Roth 13 and Ga-er and Jacobsllwhere such an idea was used to represent

time-dependent queueing behavior. Section 4 introduces issues of

estimating time-dependent availability where only statistical data is

at hand. Section 5 presents a variety of numerical illustrations.
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2. TIME-DEPENDENT AVAILABILITY: MODELS, TRANSFORMS, AND THE RANDOM

OBSERVATION (ROBS) INTERPRETATION.

Consider a system that is active or operative ("up") until failure

occurs, after which a "down" period occurs, at the termination of which

a new up period begins, and so on. Suppose the system is to be

responsive to a randomly appearing demand; what is the probability that

it will respond properly, or be available, at the time of the demand?

In the military arena the device might be a surveillance (radar, sonar)

or communications system. In the commercial nuclear power context it

might be a coolant pump.

There are many versions of this problem. The simplest and most

traditional imagines that the system operates continually between

failures, and failure is instantly detected upon occurrence. tip times

may be modelled as iid random variables, either directly or indirectly.

If the system is redundant a new up time begins at the instant an old

one terminates, with repair off-line. Down times may also be iid.

However, there are many plausible exceptions to these scenarios, a few

of which are considered next.

Here are various sample model formulations; the list is by no

means complete. In all of these the system is up at t = 0:

modifications are straightforward.

Model 1: up times are iid {Ui}, with df Fu(x); down times are iid

{Di}. d.f. FD(y). A(t) = P{System up at tiup time starting at t = 0}.

Then, by a simple backward renewal argument, A(t) satisfies the

integral equation

A(t) = Pu(t) + A(t-v)Fc(d%!) (2.1)

0*



where FC(t) = Fu *FD(t), the convolution. Laplace-transforming,

A(s) = Jo e- A(t)dt =S1 PCF(s)] (2.2)

If the item is observed or demanded at random time T - exp(s) then

E[A(T)] = 00 stA(t)dt 1 - s (2.3)
f1 - C(s)

and since E[T]_ _ 11s =r, the probability of being up upon demand is

ao() E, [A (T)] = P U() (2.4)

E[]- E[U] asr-(2.5)
E[C] -E[U] + E[D]j

by Taubci'ian/Abelian results;, see Feller (1966). One can view (2.4) as

the availability uinder random demand or observation; ROBS for short.

To emphasize the fact that exponential random observation is involved

we utilize EROI3S. The last. formula, written here as

a =(O E [U] (2.6)
El[CU] + E [D]

is the widlely-applied long-run availability. It may well be inappro-

priate in many of the contexts in which it is applied.

Nte.v t hough,. that

;to 7- U~~l)(2.7)



has a definite interpretation for all r. It is usually easily computed

and interpreted whenever transforms of U and D (or C) exist. As will

be seen, it can be estimated from data under many circumstances--even

when the model selected has either E[U] or E[D] infinite and (2.6)

becomes uninteresting.

Here are several additional models whose transforms can be

directly written down, and directly interpreted under EROBS demands.

Model 2: The initial up time U0 has df FU 0; {D i + Ui = Ci,

= 1,2,...} are iid and independent of U0 . This attempts to model a

situation in which the quality of maintenance during a down time

affects the distribution of the next. up time, so these times are

dependent; the influence stops at that point, however. Let AD(t) =

P{system not up (down) at tidown time starts at t = 0}. Then

rt
AD(t) = FD(t) + AD(t-r)FC(dr)

and

1 if U0  > t,
A(t)

A AD(t-U 0 ) = 1 - AD(t-UO) if U0 < t

SO

A(t) = Fu(t) + [1 -AD(t-r)IFu0(dr = I - f AD(t-r)FU (dr)

0o0 0

Transform inig give \'C

63 0



s I - PC(s)- FU0(s) + FU(s)F'D(s)1 - Fc(s) (2.8)

from which the observational probability a0 (r) can be immediately

written down: a 0 (r) = r-lA(r-1). Models that propose that the up time

can positively influence the duration of the following down time have

been formulated; see Gaver 4 .

Model 3: (Random changepoint model; "reliability growth"). Suppose

the system fails according to up times {U,1 . i = 1,2 .... I}, jid Fl(u)

and thereafter {Ui 2 , i = 1+1,1+2...j.}, iid F 2 (u); I - pi is the change-

point and is associated with diagnostic-repair activity. Let FD(u)

describe the lid down times {Di, i = 1,2 .... }. Suppose the system

starts operation as a Type 1 up time, transitioning after a random

number of down times to Type 2. Let A 1j(t) denote the probability that

the system is up and in state j at time t given it is up at time 0,

i.e. t is contained in an up time of Type j. Then, using backward

renewal arguments,

A 1 1(t) = Flu(t) + (1-pi) J AII(t-r)Fjc(dr)
0

A 2 2 (t) = F 2 u(t) + J A22 (t-r)F2c(dr) (2.9)
0

and

A 1 2 (t) = A 2 2 (t-r)G(dr)
0

wh e t'c

]= T pFI(r)



as before F. (r) refers to the (If of a cycle t imie Ui+ D. Transforming

immediately produces a solution:

A1 1 (s) Is_ - Flu(s)

A 2 S) () (2.10)
1 2C(s)

A 1 2 (s) A2 2G (s)

arid

G(s) j())=

thIis last being Ihev generating function of the number of repairs to

I ratis, it i on rv, I .Assemble to obtain the t ransfor'm of t he probab ili ty

o)f being ii) at t:

00

= J eluA 1 ( ) + A 1 ( ]d ) +fJ f12(s) ( .1

(- Fiu(S) 72

(Xrieqlitently thbe observ'at i ona probabil1i ty

a 0 (r IK[('V] I 'JU( 1/7) ___(2___12)_

(~F1),c 1/r F I(Cc 7/ 1 1'2C' 1 /~7

11 1 ] 1-)
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but the latter limiting formula provides no information about the

availability at early times, possibly before change has taken plat,-.

The EROBS random demand formulation at least allows some informal ion to

be obtained in a very direct and meaningful manner by just evalual ing

the transform itself numerically.

Model 4: (Markovian changepoints). It is possible that a system

alternates slowly between failure states, either temporarily or

forever. The random motion may be in response to occasional changes in

mi titenance practices, to debugging (reliability growth), or to ageing

(reliabilit, decay) and subsequent replacement. To illustrate, let

there be just two failure distribution states, as in Model 3, but let

{Pij; i,j = 1,2} be the transition probabilities of a Markov chain that

governs jumps between them. Suppose the system starts in state 1. at

the beginning of an up time Ui - FU(r), i = 1,2. Then, letting Aijl )

be the probability the system is up and in state j at time t given it

just started an up time at time 0 and was in state i,

Al(t) FlU(t) + P11  A11(t-r)FIc(dr) + P 1 2  J A2 1 (t-r)FIc(dr)
0 0

A 1 2 (t) P 1 2  J A2 2 (t-r)Fic(dr) + pl J A1 2 (t-r)FIc(dr) •  (2.13)

0 rt
A 2 2 (t F2U(t) + P22 J A2 2 (t-r)F 2 c(dr) + P21 J A 1 2 (t-r)F 2 C(dr)

A\21(1 = P21 J' A11(t-r)F 2 c(dr) + P2 2  Ft A2 1 (t-r)F 2 c(dr)
0 e

"Irtan sfo rm i rig y i e 1lds these equat ions,

II i II II



1-Fiu~s
A1 1 (s) S + Pi 1 A 1 1 (s)Fjc(s) + P 1 2 k 2 (s)Flc(s) ( 2 . 14, a)

A 1 2 (s) =P 1 2 A 2 2 (s)FIC(s) + Pl 1A 1 2 (S)IC(s) (2. 14, b)

A22 (S) = + -FU() P 2 2 A2 2 (s)F 2 C(s) + P 2 1A 1 2 (s)p 2 C(s) (2. 14, c)

2()=P 2 1x11(s)F 2 C(s) + P 2 2 A2 1 (s)F 2 C(s) . (2.14 .d)

Solve (2.14,a) and (2.14,d) Simultaneously to get

4 A 1 () - PIIFIC(S) -P1 2 P 2 1 IC (s)P 2 C (s)/(1P 22 2C (s))](.5

From (2.14b,c),

A1 2 Is sLP 2 2 FPc(1P pi2 Fi(S 2 (S)/(Pii()~ (2.16)

( piFic(s))

It follows that if r =1/s,

a1 (7) SA~t sL 11(s) + A 12 (s-)]

I - F1i,(s)

1 - 2U(5) (2.17)
S-r) 2 2F2 C (') Pl 2 P2 1 f iC(s-) 2c (s)/(I Pii IC (s)

12Kic 0



The above formula is manifestly opaque as it stands. Tauberian/

Abelian results present the long-run behavior:

all(i) = lir sA, (s) = (2.18)

s-0 E[C1] + (p 1 2 /P 2 1 )E[C 2 ]

and

E[U2 ] (2.19)E[C2 ] + (P 2 1 /P 1 2 )E[C1 ]

so the sum

al(')) = all(E) + a 12 (00) E[Ul] E [U 2 ]
E[Cl] + (P+ 2 /P 2 1 )E[C2 ] E[C2 ] + (P 2 1 /P 1 2 )E[C1 ]

(2.20)

represents the long-run probability that the system is up. Of coirse

a l (r) for r finite is available from (2.17) and potentially provid-3

considerably more information.

Many other such models can be constructed and "solved" by

transforms. In what follows we illustrate the way in which suich

transform solutions can be exploited to yield time-dependent and

inferential information. The intention is to provide simple and

flexible approximate information rather than to utilize more exact. but

also more comp'itationally demanding, procedures.

11



3. TIME-DEPENDENT AVAILABILITY AT FIXED OBSERVATION TIMES (FOBS):

SIMPLE EXPONENTIAL REPRESENTATIONS.

It is familiar from the theury of finite Markov chains and also

from renewal theory that if a long-run or steady-state condition is

reached by a stochastic model, then the nature of the approach is often

essentially exponential. In particular, if, in Model 1, U exp(A),

D - exp(p) then for A(O) 1,

A(t) = + A + e (3.1)

Such a time dependence is exhibited approximatt ly by the M/G/1 queue;

see Odoni and Roth1 3 ; Morse 14 '15 , and later Kielson1 6. and others have

assessed the relaxation times of various queueing systems. See also

Gaver and Jacobs1 1 for a brief discussion of the time-dependent M/G/1

queue utilizing such a representation.

It is well-understood that natural generalizations of the Markov

formulation producing (3.1) can, for certain models, lead to damped

oscillatory approach to a steady-state value a(oo), or to ultimate

approach that is exponential modified by a negative power of t.

However, in what follows we shall assume that the "error" at time t is

approximately exponential:

-/dt
e(t) = A(t) - A(x) _ n e (3.2,a)

or. more elaborately.

_ (Ol+i(t 2 ) (r+O)t + (nil-il 2 )e(ri0)t (3.2.b)

12



and investigate ways of assessing parameter values from (a) perfectly

specified models, wherein the distributions of U, D are presumed known,

and (b) from data. This section deals with problem (a).

The motivation for considering simple exponential model (3.2) is

the desire for an easily comprehended and computed assessment of time-

dependent availability at a fixed demand or observation time

(abbreviated FOBS). In many cases encountered such an assessment (or

assessments) of a and # or of a,, a2 , r and 0 can provide a useful sense

of the behavior of A(t) as time progresses without the necessity of an

extremely time-consuming and computer-intensive transform inversion

procedure or of a symbolic inversion in terms of polynomial roots; the

latter is "explicit," but hardly comprehensible in general.

Simulations and numerical solutions of governing integral equations are

also useful approaches, but they are generally more computationally

intensive than our proposals here.

We suggest several ways of matching an exponential to A(t) by

utilizing the transform A(s), presumed given.

3.1 Method 1: Least Squares, Unweighted and Weighted ("Tuned")

Begin by considering (3.2,a). If

e(t) = A(t) - A(o); (3.3)

-Ot
we wish to represent this "error" by Z(t) = ae Consider

0 0

13



the integrated squared error; the object is to minimize L by choice of

a and /3. Differentiation on a easily gives the cptimizing condition

a 0 = 2,3 e(t)e- tdt = 2/6(/g) = 20() A ;() (3.5)fo

i.e. ao0 is evaluated in terms of the known Laplace -rnsform of A(t)

and of e(t), evaluated at /3. To find a minimizing 3 it is possible to

proceed by squaring the integrand of (3.4), discarding the e2 (t) part,

and substituting a0 for a. Simplification leads to

-L(ao (0) , ) = (0) = -20[&([1)]2 (3.6)

which can be readily searched for a global maximum, f0" It is easily

verified analytically that. if U - exp(A), D - exp(p) in Model 1 then

00 = A + M, as it should. In general the search of (3.6) must be

conducted numerically.

The straightforward least-squares procedure can be tuned towards

different time ranges by appropriate weighting. We may seek to

minimize

-~, w) = e )-ae - J t 2w (t r)d(t (37

0

whe re

) near r

0 f a t from r.

1I '

-- i, ,umm m gin l ll i el l llaalllm ili l~S



Then the minimizing a and P values, now a0 (T) , 30 (r) , should lead to an

exponential approximation that performs especially well near r--

although perhaps less well further away. Again it is convenient to

select an analytical form for w(t;r) that is compatible with the

Laplace transform, i.e. involves linear combinations of exponentials.

An example is the density function of exponential order statistics;

this device was used in a numerical transform inversion scheme

(Gaverl0; Gaver and Jacobs 1 1 mention the idea in the present context)-

Here is a specific example of weighting. Let

w (t;r) = 3e - P t . e - U  (1 -e- P t ) = 3 (e- Pt p-e-3/t t) (3.9)

where -. Then minimization leads first to

- - e-ft - p dt = 0O 00J(e(t)a- te t3(e2P p-e3PAp)dt =0

which gives

6(0+2p) (+3)- = 0 (3.10)

or

a 0 ~f) = (03+2p) 6 (03+3p)
1/( 2 0+ 2 p) - 1/(20+3 p)

= [i(0+2p) - (0+3p) ] (20+2u) (2-+3ti) (3.11)

15



Squaring and omitting the term in e 2 (t) delivers

-A (a0(,0) ,3 )  = (,3) = (2,3+21,) (2,3+3p) [- (,3+2p) -&(,0+aju) ]2  ,(3.12)

which can be easily searched for a global maximum. The estimation

procedure is tuned towards r- =- in this case. A sharper tuning can

be accomplished by a weight function that concentrates more tightly

around r than does (3.9); the latter is recognizably the density of the

median of a sample of size 3 from an exponential df. If w is the

density of the mth order statistic of a sample of n exponentials then

its mean is + +n- " n-.+. + ln(1 - M) and its variance is

1 m-1 if m is proportional to n. As n increases the density
p n (n-m+1)

function of w = w n approaches a Gaussian/Normal density with variance

decreasing like 1/n, which is essentially a delta function at r as n -

00.

3.2 Method 2: Derivative Matching: Exploiting Random Observation

Times (ROBS).
-fit

Since it is proposed to approximate e(t) = A(t)-A(oo) by ae , and

since the transforms of both sides are known (or can be estimated from

data) one may contemplate determining a and 0 as the solution of

fr f00 C_ / [AQI)-A(,x-)] di 'it/)fk

.00 -u/r -/u di. 1

J - +/r(3. 13 )0

t hat is, the sy'stem is ob-erved at a random exponent ial I ime having

mean r. One cihoice for r is t,. Ot'. i(oisIy any (i. 3 so found must

16



implicitly depend upon r; in many situations for which the exponential

is nearly correct the dependency of 0 and a on - will be gentle. Here

are two derivative-like prescriptions for finding a(r), O(r):

(a) Solve

1 1
- + A) r(r + A) 1/ (r + A)

(3.14)

1 1
a + (r - A) r(r - A) = 1/e(r - A)

for a = a(r;A), 1 = 7(r;A).

(b) Invert and analytically differentiate aLt an iinteresting r-vd&ue

r(r) r - 1 + 13 (3.15)
A(1/r) - 7A(o)

r'(r) - (3.16)

Now solve simultaneously for O(r), a(r). A good diagnostic step is

to plot a(r) and O(r) vs. r; if the plots are nearly constant with r

then the exponential provides a useful form; if the change is gradual

it can potentially be represented by an empirical function, e.g. a low-

order polynomial.

It is also possible to match the exponential approximation by r-

tuning, as was done by the weighting procedure of (3.7). Simply

observe the system with probability density

w't-.r) = c(n,m) (1-e-'t ) M-le-Pt P(e- 't n - m  ; (3.17)

it is convenient to take n odd and m [n/2].

17



3.3 Method 3: Matching Transform Means.

The following procedure represents another possibility for

assessing ).Put a =1 - A(oo) and write

A(t) =A(o,) + (1 - A(coo))P(t) (3.18)

and, denoting the transform of P by p,

J stA(t)dt =- sA(s) = A(oc) + (1I A(oo))sp(s)

(3.19)

Note that if

A (t) A A(o) e 't(3.20)

then transformation yields

sp(s) 1

or

[1 + /()ss) 1, (3.21)

so

- () .(3.22)

is



To expl icate the behavior of ~3for large t, expand (3.22) in powers of

s for s small:

sA s[) - SA()] (3.23)

sE[C] {FC(s) - PU (s)}

E[C] [1 -Fu(s)] - E[U] [1 -FC(s)]

sE[C]{-s(E[C]-E[U]) + a:(E[C ]-E[U2])+o(s2)

E[C Es[U - [U2 ] I - E[U] {sE[C] - t--E [C 2 ] }+0 s2)

Thus.

lrn 3(s) 2E[C]{E[C] - EU (3.24)
S-0O E [C2]E[U] - E[C]E[EU2]

It is anticipated that this expression i!= useful when t becomes large,

provided a simple exponential is an appropriate approximation.

We will evaluate (3.22) for s =1/t, t being the time of interest.

It is also possible to tune this procedure to a time t as before. In

particular. setting

Dw(t~r) {A~t) -A (oO) dt =Jw(t;7)e/3t (3.25) O

11d -colving for /3 where, for example, w is as in (3.9). This tactic

will be employed for inferential purposes in Section 5 with w(t;r) of

the form in (3.9).
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4. TIME-DEPENDENT APPROACH CHARACTERISTICS ASSESSED FROM DATA.

In this section we examine situations reasonably represented as

indicated previously, but for which limited irformation on the up and

down times is available: only samples of finite sizes nu for the up

times and nd for the down times are at hand. Furthermore it is desired

to avoid using particular conventional analytical forms for the

underlying distributions; instead "non-parametric" or "distribution-

free" methods will be invoked. Finally, the availability at a finite

time after an initial moment is of interest.

4.1 Predicting Availability Assuming EROBS: Point and Interval

Estimates.

Suppose we wish to estimate the availability of a Model 1-type

system at a random (exponential) time with mean r, i.e. assuming EROBS.

Data are available on the up times and down times:

tl 1 1 "I2  . . . I Un u ,

C1I. d 2. . . . . . dnd

are the respective observations; although the order of observation is

u 1 , d 1l, u 2 , d 2, .... etc., it will first be assumed that the ui's and d,'s

are independently sampled from fixed distributions FU and FD, but the

latter process is otherwise unspecified.

A natural non-parametric procedure is to define the sample or

empirical transforms

6su nd -sd i

Ou(s) nu 0-_ u e D s

an(lI () it i ize t hese in 1) 1ace of the population or I-rue transforms that

20



appear in (2.4) as a solution to the problem posed. Thus a non-

parametric estimate of the desired availability is

E[A(T)] - a(r) = 1 -Ou(r - 1) (4.2)1 - -1()~( )

Notice that the up and down times are conveniently assumed independent

here. Procedures to deal with more complex models can and should be

devised; accommodation to possible up and down data dependencies is a

natural step, first by graphics and subsequently by model fitting and

testing.

There are various options for estimating the sampling variability

of the estimate (-1.2) given the basic model. A classical procedure,

adopted here, is to first note that under our assumptions both Ou(s)

aad D(s) are asymptotically Gaussian/Normal by the central limit

theorem, for they are seen to be (modelled as) averages of independent

and even bounded random variables e -SU, e-sD: s = 1/r > 0. We find

easily that the corresponding random variables U(S), D(S) are

approximately distributed as follows:

( .) (u (2s ) _ f u( ( ) ) 2)

N(fD(s) D( 2 s) nd(PD(S))2

Since Ai0 (r) is a probability, confined between zero and one, it is

rea,onable to carry out, fu rther asymptotics on a transformal ion we

choose to st udy the logistic transformation
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e(1) = n_( ) ] In 1 (4.4)

- ln[1-6u(s)] - in OU(s) - In[1-D(s)]

Expand in Taylor series (the delta method) to obtain

E[f(r)] =nF a( r
T) + 1 1-2Fu 1 Var[O]

[-a0(r) i 2 ((lpu Var[ ¢ U] + 2 (1-lP') 2

1n a(,). + l2u/nu + (4.5)J ( 1- (p) U) 2  01-6D) 2

where we have replaced Fu and PD by their estimates Ou and C) in the

correction term. Furthermore,

1 Var[1u] +  2 VarflD]

, ( 1 p) '

2 2,
/ 2. (4.6)

(OU(1_0u))2 + (1_OD )2

We have put

2 - nu 1 .  (e u-Ui 6U)2

and (4 . 7)

2 5d_(11
d n - D)

F i na I y, approx i mat e n. 1O07 c on F i dene o in m i a r g i ven by

"2"2



e+ za/ 2  se ln[a 0 (T)/(1-a 0 (7))] < e + zl 1 /sf 48

and

1(1 O)~ )n (1-OD )2 _d(49

wiest S2 -from (4.6). The expression (4.8) is then inverted to

provide two-sided confidence limits for the actual availability. A

numerical example is provided in a later section.

4.2 Predicting Availability Semi-Parametrically at Fixed Time

(According to FOBS).

Utilize the same data as that in section 4.1 but suppose we wishj

to est imate

A( t.) A + a e (.1.1 W)

A\fte r some experimentation it has been found that Method :1 aI)ove ('all f

most easily and effectively adopted to estimate 3 and o: it) (3.18k) pill

anid es-t imate 3 by evaluating the emp i rical \ers i er of' (3.22) . Ill h li

iripi est. case (Model 1) , thle empi ri cal vers ioln of p( s) is gi \en h\
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so the estimator of (3.22) is

f~e(5) 1 - sfb(s) (.3
0, (s)(s) ( .3

Setting

in (3.25) results in the equation

*3p[j5(21) - f)(3/1)] =3y L2y + 3) (3 y + 3)

or

3+ 5/13 + 6P2~ j5(2p) 0 (_31) = 0 (4.14)

a quad rat ic i n 3. The positive solution to (4.14), flq, gi-ves another

estimate of 3:

3 q = [-5p + ,JP2 + 4/t[j5(2p) - j5(31t)]']1 (4.15)

w.here p -5 In practice Qmay occasionally be negative or imagi-

4 nary, in which case a reasonable alternative is required1. In our simu-

l at ion,* tests- of the procedure defaulIted to an est. imate appropr i ,te for

V.D independent and exionentially distributed. i e. 3+ H) ho.-

ever, in general a. non-positive 3 may indica--te inappropriateniess of' the

2 4



exponential-approach model (4.10) so a problem-dependent alternative

must be sought.

The asymptotic behavior of the proposed estimates is not explored

here. In the following section we describe bootstrapping (sample re-

use) procedures and results for accessing sampling variability of

estimates of A(t) and 3.

2
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5. NUMERICAL ILLUSTRATIONS BY SIMULATION.

The procedures described earlier will now be illustrated, and to

some degree tested, using simulated data.

5.1 Predicting Availability under EROBS: Illustrations

Refer to Section (4.1) for t'.e basic approach to be utilized.

Suppose that nu = nd observations are available on iid exponentially

distributed up and down time random variables; E[U] = 1, E[D] = 4.

These data are to be processed utilizing expressions (4.8) and (4.9).

To do so, a total of ns = 500 independent simulations were carried out

for the cases n u = nd = n = 10, and nu = n d = n = 25. In Table 5.1 are

reported the mean values of the estimates of availability at an

exponential time with various means r. Results on 95% confidence

levels ae also given (average values in parentheses).

In order that the point and interval estimates behave as well as

they do for small samples (n ; 10) the bias correction recognizable in

(4.9) is required, and the normal percent-points are best replaced by

Stuldent t percent-points with n-1 degrees of freedom. An alternative

to the above procedures is to apply the jackknife; see Gaver and Chu.

Howevet, the present method is perhaps more easily carried out on small

computers utilizing nominal confidence levels (l-a).1007. The fraction

of the confidence limits covering/surrounding true availability at r

was tabulated, as were the mean upper and lower confidence limits on

availability. The following table provides a summary of the results:

as can be seen the coverage is close to the nominal 957.
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Table 5.1

Coverage and Mean Confidence Limits, EROBS
Nominal Confidence Level 95%

r-Values

0.125 1.00 10.00

True: (lower) 0.92 (upper) (lower) 0.83 (upper) (lower) 0.80 (upper)
Availability: Estimated: (0.71) 0.90 (0.96) (0.66) 0.84 (0.93) (0.63) 0.81 (0.91)

(n = 10)
Coverage (%) 94 96 94

Availability: Estimated (0.82) 0.93 (0.97) (0.74) 0.83 (0.90) (0.70) 0.80 (0.88)
(n = 25)

Coverage (%) 93 97 96

The figures in parentheses represent mean upper and lower confidence

limits: notice that, as anticipated, these tend to move towards the

true values as the sample size increases.

5.2 Predicting Availability under FOBS: Illustrations

Again we use simulation to assess the accuracy of the proposed

exponential approximations given in Section 3.

It has been found experimentally that the empirical-transform-

adapted least-squares approaches of Section 3.1 tend to be numerically

unstable for small sample sizes; they behave well when component models

are assumed perfectly specified ("known") or for very large sample

sizes. On the other hand, Method 3 of Section 3.3, adapted to the

empirical transform as outlined in Section 4.2, performs satisfactorily

for, the various cases considered and is not computationally intensive.

Simulation res, lts for three different estimators for A(t) are

reported . The est imators are al of the form

/\ t) , + ( r - ) 1- . (5.1)
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where

The estimators differ in the manner in which 13 is estimated. The first

estimate, Ap(t), estimates 3 by

O = (0 - 1 + d- ) (5.2)

Note that Ap(t) is the estimator that would be obtained if it were

simply assumed that {UJ} and {Di} are independent sequences of

independent exponential random variables and maximum likelihood is used

to obtain estimates of A(t), i.e. if the simplest Markov model were

automatically invoked. The second estimator, Ae(t), estimates 3 as in

(4.13) with The third estimator, Aq(t), estimates 13 as in

(4.15) with p = If the estimated O's are negative then 3 is set

equal to 3p, the MLE estimator of 3 if it were known that {U1} and {D}

are independent sequences of independent identically distributed

exponential random variables. In our experience such pathological

cases are rare.

All simulations were done on an IBM 3033 AP at the Naval

Postgraduate School using the LLRANDOM[I random number generating

package; Lewis and Uribe 1 . The simulations reported in Tables (5.2)

and (.77.3) have 500 replications. Generated in each repl icat ion is a

sample of nu = 25 up times and nd = 25 down I imes. In t he exper imerit

reported in Table (5.2) t;he up times and down t i mes are independent

Three dist ribut ions are used to generate the down I imes:

28
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Table 5.2

Estimates of Availability
Independent Up and Down Times

Time Dist True Op Ap(t) P3e Ae(t) 13q Aq(t)

A(t) Mean Var Mean MSE Mean Var Mean MSE Mean Var Mean MSE

(Median) (Median) (Median)

.2 A .83 3.1 .14 .85 .03 3.8 4.2 .83 .06 3.8 4.7 .83 .06

(3.1) (3.4) (3.4)

.5 (Gamma) .71 3.1 .14 .74 .05 4.6 34 .72 .06 4.5 23 .72 .06

(3.1) (3.6) (3.7)

1.0 .67 3.1 .14 .68 .05 4.7 48 .68 .05 4.6 23 .68 .05

(3.1) (3.6) (3.5)

.2 B .85 3.1 .23 .85 .03 3.4 3.2 .85 .05 3.3 3.1 .85 .06

(3.1) (3.0) (3.0)

.5 (Exp) .74 3.1 .23 .74 .04 3.5 4.7 .74 .06 3.5 4.7 .74 .06

(3.1) (3.0) (3.0)

1.0 .68 3.1 .23 .68 .05 3.7 14 .69 .06 3.9 18 .69 .06

(3.1) (3.0) (3.0)
.2 C .90 4.4 6.7 .86 .06 3.4 38 .91 .03 3.5 52 .91 .03

(3.4) (1.7) (1.8)

.5 (Al. Exp.) .87 4.4 6.7 .77 .13 2.9 57 .87 .04 2.5 14 .87 .01

(3.4) (1.2) (1.2)

1.0 .84 4.4 6.7 .72 .17 2.5 26 .82 .06 1.9 6.1 .83 .06

(3.4) (1.0) (.92)

2.0 79 4.4 6.7 .70 .17 2.5 75 .77 .09 1.8 9.8 .78 .08
(3.4) (.87) (.80)

Table 5.3

Estimates of Availability
Dependent Up and Down Times

O u~o € c

T me Case True 13q Aq (t) fq Aq(t)
A(t.) Mean Var Mean MSE Mean Va r Mean MQF'

0.2 DA .94 3.1 1.7 .85 .10 1.0 .13 .9,4 .02
0.5 .87 3.1 1.1 .75 .13 1.0 .07 .87 .03
1.0 .79 3.1 1.0 .69 .11 1.0 .07 .79 .03
2.0 .72 3.2 1.9 .67 .05 1.1 .09 .71 .02
0.2 DB3 .97 3.1 14 .91 .07 .73 !5.1 .97 .02
0.5 .93 2.4 11 .87 .07 .83 3.8 .93 .03
1.0 .88 2.0 7.2 .83 .07 .79 .56 .88 .05
2.0 .81 1.8 8.0 .78 .08 .83 .45 .81 .07
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A: P{D > t} = 1 - e-4 t _ 4 te&4t , t > 0 ; (Gamma)

B: P{D > t} = e- 2 t, t > 0 ; (Exponential)

C: P{D > t} .9 e&9t ±.le-25 t > 0 ;(Mixed Exponential).

The tip times arc generated from an exponential distribution with unit

mean. The theoretical values of A(t) in each of these cases are

A: A(t) .67 + -4-5t[. 3 3 cos(1.9t) + .26 sin(1.9t)] ;(5.3)

B: A (t) .67 + .33e- 3 t ; (5.4)

C: A(t) =.67 + .2 4 e-4 + .09e-9 t (5.5)

For each replication of the simulations whose results are reported in

Table (3.2) the three est imates of A(t) are computed. The mean, and

mean square error (MSE) , of Ap(t), Ae(t) and Aq(t) are computed: i.e.

the mean is

Ae(t) 4- eIA(k~t) (5.6)

andc

NISE =_5 00 A,(;t - A (t)) (5.7)
k=1

where A ( k; t ) is t lie po i nIt est imate at t i n the kth real i zat ion .

Flirt hermorte, the mean andl variance of the estimates of fl are di spl ayed.

5.3 Discu-ssion of" 'Fables.

TFable (5.2) reporls result-, for simulations with data samplesie

25). Not sit rpri isi g I, t he exponent ial est imator Ap (t) has, means equal

to Ithe va 1 tisof A\ (It ) aind t he sina I l est mean square error i n t lie case B
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of exponential down times. The means of Ap(t) are somewhat different

from the A(t)'s in case A (gamma down times) and quite different in

case C (mixed exponential down times). The estimators Ae(t) and Aq(t)

have means which are closer to the A(t)'s than those of Ap(t) in cases

A and C. The means of Ae(t) and Aq(t) are a bit low for t = 1, 2 in

case C. In cases A and B the values of the MSE of Ae(t) and Aq(t)

indicate the greater variability of these estimators. In the

exponential case B, the true value of # is 3; the estimator #p has

means closest to 3 for case B and much smaller variances compared to /e

and 0q. In the other two cases p(t) is not of the form e- Ot; the

theoretical values of A(t) are given in (5.3) and (5.5).

In case A (gamma distributed down times) the single parameter, 3,

of exponential decay is -1.5. The means of the estimators, 0e and Oq are

closer to this value than those of 3Jp. In case C of mixed exponential

down times, the smallest parameter of exponential decay is 0.341. Once

again the means of 1e and Oq are closer to this value than are those of

Op. The variances of O3q and lie for the sample size of 25 can be large.

In many cases the variance of lq is less than that for lie. Increasing

the sample size decreases the variances, as is anticipated.

Table (5.3) summarizes a simulation study of the procedure of

Section 4.2 in two cases in which the pairs (UiDi) are independently

and identically distributed with Ut and D i perfectly dependent. The two

Case S are:

DA: Ui =E and D i  R with {Ei} independent identically

d'-tributed exponentials with unit mean.

SIanwith probability .9.

f,-Ej with probability .1
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with {E1} independent exponential random variables with unit mean. In

case DA

2I

A t + 1 e-t (5.8)3

In case IJB

0.) + 1 Ole- + 0. 22e-02  
(5.9)

In the simulations two estimators for FC(s) are used. The first

(incorrectly) assumes that U } and Dnd are independent and uses I

cseto estimate C(s). The second does not assume independence.

and instead estimates PC(s) by

1 c -[u 1 +di1

1=1

gC() = f -C+ - e -  (5.10)

The table shows results for the estimators Aq(t) and eq. The sample

size is 25 and there are 500 replications.

Table (5.3) informs us that the estimators may be noticeably

sensitive to the choice of the estimator of PC(s). If U and Di are

dependent, then using FU(s)OD(s) to estimate P(s) can be quite

misleading. As a result, it is suggested that if there is a

possibility that U and Do may be dependent, .(s) is the more model-

robust estimate of PC(s), and hence of the desired availabilities.

Note that in case DA, A(t) has exactly the presumed form of

(4.10). When As is used in this case, the mean value of the dq's equal

the theoretical value of unity in all but the case t = 2.0. In case
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DB, p(t) is actually a mixture of two exponentials, one having rate

unity and the other having rate 0.27; when 0 c is being used, the mean

values of the /q's fall between the two correct rates. Emphasis of

either rate, and the corresponding probability, can be achieved by

weighting.

5.4 Semi-Parametric Confidence Intervals Illustrated.

Table (5.4) shows bootstrap confidence intervals for Aq(t) and 4q

at various times. A single sample of 25 up times and 25 down times is

generated by simulation. The up times are independent with unit-mean

exponential distribution; th--y are independent of the 4own times. The

down times are independent with the gamma distribution, case B. One

hundred bootstrap replications were then carried out and Aq and q are

computed for each replication. Both estimators of Fc(s), OU(s)0O(s)

and oc(s), are used. Table (5.4) exhibits the 5th, 50th, and 95th

order statistics of the estimates which give 95% confidence interval'

of the parameters.

All confidence intervals for 3, cover the true values for the

particular sample utilized. The confidence intervals for 'Iq cover the

exponential decay parameter of value 4.5, for the gamma case, The

confidence intervals for Aq(t) are the same for both methods, of

estimating Fc(s) suggesting that not much is lost by using oc(s) to

estimate Fc(s) in the independent case. As a result, it is suggested

that if there is a possibility that {fi} and {Di} may be dependent then

6c(S ) is the more robust estimate of Pc(s).

A similar bootstrap experiment was carried out with a single

sample of 25 up t imes and 25 down times generated from mode) DA in

wh i ch t he tip and down t i mes are dependent . Onre hu1ndred ootst rap

3:3



Tlable 5.4

Bootstrap Confidence Intervals
Gamma Distributed Down Times
Indecpendent Up and Down Times

OUD oC.
Time Trule OqAq(t) OqAq(t)

A(t) .05 .50 .95 .05 .50 .95 .05 .50 .95 .05 .50 .95

.2 .83 1.6 4.1 13.6 .71 .84 .92 1.6 3.9 11.8 .71 .84 .92

.5 .71 2.4 4.1 12.9 .61 .73 .82 2.4 3.9 9.8 .61 .73 .82

1 .67 2.3 3.4 16.3 .58 .71 .79 2.2 3.4 19.1 .5R .71 .79

rep i cat ions were generated and Aq and q computed f or each repl icat ion

with both est imrators of FCs). Once again the resulting confidence

nter-al s For A (t ) were, very s imi lar for both estimators of FC (')

Of' (coL1 re the above-( resul1t~s are quite fragmen-ttary, but seem usefii I

arnd prom is, i ng . Fuirt her s-amp I inrg experiments and asymptotic ii

wil I hed more 1 ight. on the behavior of the estimating procedures

explored, and may wellI suggest alternations or replacements.



6. CONCLUDING COMMENTS.

This paper argues that probability models of the availability of

various systems can be expressed in terms of Laplace transforms, and

that the finite-time behavior of such systems can be inferred, nearly

non-parametrically, from data. Our" approach has been to invoke the

empirical Laplace transforms and to utilize its easy direct interpreta-

tion (EROBS), in conjunction with a presumed approximate exponential

rate of approach to steady state, to deduce availability at a fixed

finite time after a known initial moment (FOBS).

The methods proposed are distinguished by their simplicity and

moderate computer intensivity as well as by their lack of direct

dependence upon probability models in "up" and "down" times selected

fcom conventional families such as the Gamma. Simulations have been

used to evaluate the procedures suggested, and to provide approximate

confidence limits, either by asumptotics (utilizing the approximately

Normal/Gaussian behavior of the empirical transform), or by a simple

re-sampling, Efron's bootstiap1 . i p.i L'.A.-r, we have examined the

effect on inference quality of assuming the wrong joint probability

model: one that falaciously assumes independence when dependence

(between ip and down times) is actually present.

No claim is made that the methods proposed here are the best

available: in fact there are many alternatives. One is to analytically

invert the empirical transform of availability possibly by use of the

Stehfert algorithm 19 , although competitors are available. Another is

to bootstrap directly; the latter exercise involves re-sampling up and

down times from the observed data, to reconstruct the sample path of

the process- and to score 1 al ime t if an up t ime covers t, otherwiso
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-c.ore 0. Finally, A(t) is estimated by the proportion (f ( 'e samples

that count 1. Confidence l imits are available from the basic bootstrap

technology. The direct bootstrap approach is being investigated by

Lee 2 0 . Another option is to replace the distribut, ion fu nctions in the

renewal equations for availability by their empirical counterparts and

numerically solve the empirical renewal (Volter'ra-type) equations, with

subsequent bootstrap follow-ups to assess uincertaint '. Al I such

met hods promise to be far more computat ional Iy int-ensive than our

p)resent approximate approaches. Their invest igation has been deferred.

Appl cation of otir approx i mat ion procedtire to in fer 1he M/G/I queue

fini te-time behavior is under way: Jacobs and (4'\er(i
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